VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) VI-Semester Main Examinations, May-2019

Optimization Methods for Engineers

(Open Elective-VII)
Max. Marks: 70
Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	CO	PO
	Part-A (10 $\times 2=20$ Marks)				
1.	Define basic solution.	2	1	1	5
2.	List the special cases in linear programming problems.	2	1	1	5
3.	Differentiate between simplex and dual simplex method.	2	1	2	9
4.	Write the dual form for the following L.P.P.	2	3	2	9
	Maximize $z=8 x_{1}+12 x_{2}+3 x_{3}$				
	subjected to conditions $\begin{aligned} & x_{1}+8 x_{2}+2 x_{3} \geq 90 \\ & 6 x_{2}+12 x_{3} \leq 84 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$				
5.	What is an unbalanced transportation problem and how to solve it?	2	1	3	5
6.	State the condition for degeneracy in a transportation problem.	2	2	3	5
7.	What is the importance of float?	2	3	4	11
8.	Classify multi-dimensional constrained optimization problems and suggest solution methods for each of them.	2	1	4	9
9.	How many basic solutions are possible if m equations with equality constraints and n variable and n is more than m ?	2	3	1	5
10.	State the advantages of direct substitution method for a multi dimensional optimization problem.	2	1	4	5
	Part-B $(5 \times 10=50$ Marks $)$				
11.		10	1	1	5
	Maximize $\mathrm{Z}=5 \mathrm{X}_{1}+8 \mathrm{X}_{2}$, subject to the constraints: $\begin{aligned} & 3 X_{1}+2 X_{2} \geq 3, \\ & X_{1}+4 X_{2} \geq 4, \\ & X_{1}+X_{2} \leq 5 \end{aligned}$ $\text { and } \mathrm{X}_{1}, \mathrm{X}_{2}, \geq 0$				
12.	Solve the following LPP by dual simplex method	10	2	2	5
	Maximize $\mathrm{Z}=-2 \mathrm{X}_{1}-3 \mathrm{X}_{2}$, subject to the constraints: $\begin{aligned} & \mathrm{X}_{1}+\mathrm{X}_{2} \geq 2, \\ & 2 \mathrm{X}_{1}+4 \mathrm{X}_{2} \leq 10 \\ & \mathrm{X}_{1}+\mathrm{X}_{2} \leq 8 \end{aligned}$ $\text { and } \mathrm{X}_{1}, \mathrm{X}_{2}, \geq 0$				

13. Determine the optimum solution to the following transportation problem. Cost matrix is shown below:

	A	B	C	D	E	AVAILABLE
I	12	4	9	5	9	55
III	8	1	6	6	7	45
III	1	12	4	7	7	30
IV	10	15	6	9	1	50
REQUIRED	40	20	50	30	40	

14 Construct network diagram and identify the critical path for the following project.
i) If the activity $5-6$ is delayed by 2 days what is the affect on project completion.?
ii) Find the float for an activity $2-5,4-6,6-7$.

Activity	$1-2$	$1-3$	$2-3$	$2-5$	$3-4$	$3-6$	$4-5$	$4-6$	$5-6$	$6-7$
Duration (weeks)	15	25	3	5	8	12	1	14	3	14

15. a) How do you identify alternative optimal solution in Graphical method, show by graph with a suitable example and Simplex method.
b) Define the term duality and explain how duality is helpful with an example.
16. a) Find the initial solution by least cost method for the following transportation problem.

		D1	D2	D3	D4	Supply
Plant	P1	12	7	10	10	40
	P 2	10	9	7	10	30
	P 3	14	12	9	12	30
	Demand	30	25	15	20	

b) Minimize $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+\left(x_{2}-1\right)^{2}$

Subjected to
$-2 \mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}=4$
17. Answer any two of the following:
a) Solve the following LPP by graphical method

Minimize $Z=80 \mathrm{X}_{1}+120 \mathrm{X}_{2}$,
subject to the constraints:
$\mathrm{X}_{1}+\mathrm{X}_{2} \leq 9$,
$2 \mathrm{X}_{1}+5 \mathrm{X}_{2} \leq 36$,
$\mathrm{X}_{1} \geq 2$
$\mathrm{X}_{2} \geq 3$
and $X_{1}, X_{2} \geq 0$
b) Explain the Modi method by taking a suitable example.
c) Use Univariate method to minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ with starting point $(0,0)$ and probe length $\Theta=0.01$
$\begin{array}{llll}10 & 3 & 3 & 9\end{array}$ $\begin{array}{llll}10 & 3 & 4 & 11\end{array}$
$\begin{array}{llll}6 & 1 & 1 & 5\end{array}$
$\begin{array}{llll}4 & 2 & 2 & 9\end{array}$
$\begin{array}{llll}5 & 2 & 3 & 5\end{array}$
$\begin{array}{llll}5 & 2 & 4 & 5\end{array}$

51115
$\begin{array}{llll}5 & 2 & 3 & 9 \\ 5 & 2 & 4 & 9\end{array}$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	72.64
2	Knowledge on application and analysis (Level-3 \& 4)	27.36
3	"Critical thinking and ability to design (Level-5 \& 6)	--

